We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Mathematical Modeling and Prediction of Clinical Metastasis

Formale Metadaten

Titel
Mathematical Modeling and Prediction of Clinical Metastasis
Serientitel
Anzahl der Teile
11
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In the majority of cancers, secondary tumors (metastases) and associated complications are the main cause of death. To design the best therapy for a given patient, one of the major current challenge is to estimate, at diagnosis, the burden of invisible metastases and the future time of emergence of these, as well as their growth speed. In this talk, I will present the current state of our research efforts towards the establishment of a predictive computational tool for this aim. I will first shortly present the model used, which is based on a physiologically-structured partial differential equation for the time dynamics of the population of metastases, combined to a nonlinear mixed-effects model for statistical representation of the parameters’ distribution in the population. Then, I will show results about the descriptive power of the model on data from clinically relevant ortho-surgical animal models of metastasis (breast and kidney tumors). The main part of my talk will further be devoted to the translation of this modeling approach toward the clinical reality. Using clinical imaging data of brain metastasis from non-small cell lung cancer, several biological processes will be investigated to establish a minimal and biologically realistic model able to describe the data. Integration of this model into a biostatistical approach for individualized prediction of the model’s parameters from data only available at diagnosis will also be discussed. Together, these results represent a step forward towards the integration of mathematical modeling as a predictive tool for personalized medicine in oncology.