We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Recovering a Riemannian metric from area data

Formale Metadaten

Titel
Recovering a Riemannian metric from area data
Serientitel
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We address a geometric inverse problem: Consider a simply connected Riemannian 3-manifold (M,g) with boundary. Assume that given any closed loop \gamma on the boundary, one knows the area of the area-minimizer bounded by \gamma. Can one reconstruct the metric g from this information? We answer this in the affirmative in a very broad open class of manifolds. We will briefly discuss the relation of this problem with the question of reconstructing a metric from lengths of geodesics, and also with the Calderon problem of reconstructing a metric from the Dirichlet-to-Neumann operator for the corresponding Laplace-Beltrami operator. We also raise the analogous question for asymptotically hyperbolic manifolds, and the significance of their question in physics. Joint with T Balehowsky and A Nachman.