We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On the centre of mass of asymptotically hyperbolic initial data sets

Formale Metadaten

Titel
On the centre of mass of asymptotically hyperbolic initial data sets
Serientitel
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In many situations in Newtonian gravity, understanding the motion of the center of mass of a system is key to understanding the general "trend" of the motion of the system. It is thus desirable to also devise a notion of center of mass with similar properties in general relativity. However, while the definition of the center of mass via the mass density is straightforward in Newtonian gravity, there is a priori no definitive corresponding notion in general relativity, let alone in the asymptotically hyperbolic setting. I will present a geometric approach to defining the center of mass of an asymptotically hyperbolic initial data set, using foliations by constant mean curvature near the asymptotically hyperbolic end of the initial data set. This approach is joint work with Cortier and Sakovich, builds upon work by Neves and Tian, and extends results in the asymptotically Euclidean case going back to Huisken and Yau.