We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On asymptotically hyperbolic anti-self-dual Einstein metrics

Formale Metadaten

Titel
On asymptotically hyperbolic anti-self-dual Einstein metrics
Serientitel
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Let M be a compact oriented d-dimensional manifold with boundary N. A natural geometric boundary value problem is to find an asymptotically hyperbolic Einstein metric g on (the interior of) M with prescribed `conformal infinity’ on N. A little more precisely, the problem is to find (Einstein) g with the boundary condition x2g tends to a metric h on N as x goes to 0, x being a boundary defining function for N. The freedom to rescale x by an arbitrary smooth positive function means that only the conformal class of h is naturally well defined. Hence the terminology `conformal infinity’ in this boundary problem. Since the pioneering work of Graham and Lee (1991) the problem has attracted attention from a number of authors. If the dimension d is 4, there is a refinement, asking that g be anti-self-dual as well as Einstein (satisfying the same boundary condition). If M is the ball, this is the subject of the positive frequency conjecture of LeBrun (1980s) proved by Biquard in 2002. In this talk, which is based on joint work with Joel Fine and Rafe Mazzeo, I shall explain a gauge theoretic approach to the ASDE problem which is readily applicable for general M and the currently available results.