We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Measuring the Value of Randomized Solutions in Distributionally Robust Optimization

Formale Metadaten

Titel
Measuring the Value of Randomized Solutions in Distributionally Robust Optimization
Serientitel
Anzahl der Teile
39
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
This talk studies the value of randomized solutions (VRS) in distributionally robust mixed integer programming problems. We show different methods for obtaining upper bounds on VRS and identify conditions under which some of them are tight. We also devise and implement a column-generation algorithm for identifying optimal randomized solutions in two-stage distributionally robust optimization with right-hand-side uncertainty. We empirically illustrate our findings in a capacitated facility location problem where the distribution is known to be part of a Wasserstein ambiguity set. This is joint work with Ahmed Saif.