We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Robust Multicast Beamforming in Cognitive Radio Networks: Semidefinite Relaxation and Approximation Analysis

Formale Metadaten

Titel
Robust Multicast Beamforming in Cognitive Radio Networks: Semidefinite Relaxation and Approximation Analysis
Alternativer Titel
On the Approximation Guarantee for a Semidefinite Relaxation of a Class of Robust Quadratic Optimization Problems
Serientitel
Anzahl der Teile
39
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We consider a class of robust quadratic optimization problems that arise in various applications in signal processing and wireless communications. Although the class of problems under consideration is NP-hard in general, by applying the well-known lifting technique and S-lemma, one can obtain a semidefinite relaxation that yields an approximate solution to the original problem in polynomial time. However, so far there is no approximation guarantee for such semidefinite relaxation. In fact, despite the many available approximation results for semidefinite relaxations of quadratically constrained quadratic optimization problems, none of them apply to the setting where robust constraints are present. In this talk, we present the first approximation guarantee for the aforementioned class of robust quadratic optimization problems. The key to establishing such guarantee is the so-called epsilon-net technique from functional analysis, which allows us to handle the semi-infinite robust quadratic constraints in the problem. If time permits, we will illustrate our result via the problem of robust beamforming with cognitive radio constraints in wireless communications.