We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Calibrating Optimization under Uncertainty

Formale Metadaten

Titel
Calibrating Optimization under Uncertainty
Alternativer Titel
Parameter Calibration for Optimization under Uncertainty
Serientitel
Anzahl der Teile
39
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Optimization formulations to handle decision-making under uncertainty often contain parameters needed to be calibrated from data. Examples include uncertainty set sizes in robust optimization, and Monte Carlo sample sizes in constraint sampling or scenario generation. We investigate strategies to select good parameter values based on data splitting and the validation of their performances in terms of feasibility and optimality. We analyze the effectiveness of these strategies in relation to the complexity of the optimization class and problem dimension.