We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Quantitative Stability Analysis in Distributionally Robust Optimization

Formale Metadaten

Titel
Quantitative Stability Analysis in Distributionally Robust Optimization
Serientitel
Anzahl der Teile
39
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Ambiguity set is a key element in distributionally robust optimization models. Here we investigate the impact of perturbation of ambiguity set on the optimal value and the optimal solutions. We consider the case where the ambiguity set is defined through generalized prior moment conditions and the perturbation is caused by (a) increasing sample data to be used in the moment system and (b) discretization of the moment system. We quantify the perturbation against change of sample data or refinement of discretization and its impact on the underlying optimization problem. We also consider the case where the ambiguity set is constructed through zeta-ball and extend the analysis to a two-stage distributionally robust risk minimization problem and a distributionally robust chance constrained optimization problem.