We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Distributionally Robust Stochastic and Online Optimization/Learning and its Applications

Formale Metadaten

Titel
Distributionally Robust Stochastic and Online Optimization/Learning and its Applications
Alternativer Titel
Distributionally Robust Stochastic and Online Optimization
Serientitel
Anzahl der Teile
39
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We present decision/optimization models/problems driven by uncertain and online data, and show how analytical models and computational algorithms can be used to achieve solution efficiency and near optimality. First, we describe recent applications of the Distributionally Robust Optimization in medical decision making. Secondly,we consider a common practice of estimating only marginal distributions and substituting joint distribution by independent (product) distribution in stochastic optimization, where we study possible loss incurred on ignoring correlations and quantify that loss as Price of Correlations (POC). Thirdly, we describe an online combinatorial auction problem using online linear programming technologies. We discuss near-optimal algorithms for solving this surprisingly general class of distribution-free online problems under the assumption of random order of arrivals and some conditions on the data and size of the problem.