We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Constructive Polynomial Partitioning for Line in R^3: Eliminating Depth Cycles

Formale Metadaten

Titel
Constructive Polynomial Partitioning for Line in R^3: Eliminating Depth Cycles
Alternativer Titel
Constructive Polynomial Partitioning for Lines in R^3: Revisiting Depth Cycle Elimination
Serientitel
Anzahl der Teile
21
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A recent extension of Guth (2015) to the basic polynomial partitioning technique of Guth and Katz (2015) shows the existence of a partitioning polynomial, for a given set of k-dimensional varieties in \realsd, which subdivides space into open cells each of which meeting only a small fraction of the total number of varieties. For most instances, it is unknown how to obtain an explicit representation of such a partitioning polynomial (and how to construct it efficiently). This, in particular, applies to the (simple) case of lines in 3-space. In this work we present an efficient algorithmic (but somewhat suboptimal) construction for this setting, under the assumption that the lines are non-vertical and pairwise disjoint. We then revisit the problem of eliminating depth cycles among n non-vertical pairwise disjoint triangles in 3-space, recently been studied by Aronov etal. (2017) and de Berg (2017). Our main result is an algorithmic O(n5/3+\eps) bound, for any \eps>0, on the number of pieces one needs to cut the triangles such that the depth relation they induce does not contain cycles.