We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The Z2-genus of Kuratowski minors

Formale Metadaten

Titel
The Z2-genus of Kuratowski minors
Serientitel
Anzahl der Teile
21
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A drawing of a graph on a surface is independently even if every pair of independent edges in the drawing crosses an even number of times. The Z2-genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t×t grid or one of the following so-called t-Kuratowski graphs: K3,t, or t copies of K5 or K3,3 sharing at most 2 common vertices. We show that the Z2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2-genus, solving a problem posed by Schaefer and \v{S}tefankovi\v{c}, and giving an approximate version of the Hanani-Tutte theorem on surfaces.