We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Machine Learning + Graph Databases for Better Recommendations

Formale Metadaten

Titel
Machine Learning + Graph Databases for Better Recommendations
Serientitel
Anzahl der Teile
62
Autor
Lizenz
CC-Namensnennung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
This talk will cover topics related to providing relevant recommendations to users. We don’t aim to declare one recommendation method as the best but instead highlight different approaches to enriching recommendations by combining machine learning with graph databases. The methods we evaluate include: - Matrix Factorization with Graph Embeddings - Content-based TFIDF - Cosine Similarity with AQL and User Ratings The talk will briefly cover the methods and how we generated the distance metrics and provide notebooks that go into further detail. We will show how we integrated these findings into a frontend application for movie recommendations. The talk aims to show how pairing machine learning with graph databases can improve the quality of recommendations and offers some insights into the challenges of productionizing machine learning models.
Schlagwörter