We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Convex tilings by triangles and more

Formale Metadaten

Titel
Convex tilings by triangles and more
Serientitel
Anzahl der Teile
15
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A triangulation of the sphere is combinatorially convex if each vertex is shared by no more than six triangles. In joint work with Philip Engel, we show that counted appropriately, the number of triangulations of the sphere with 2n triangles is the nth Fourier coefficient of a certain multiple of the Eisenstein series E10. Our method is based on Thurston's description of triangulations as lattice points in a stratum of sextic differentials. It generalizes in a straightforward way to show that the number of convex tilings of a sphere by squares or by hexagons also form the coefficients of a modular form. As a consequence, we reproduce formulas for Masur-Veech volumes of certain strata of cubic, quartic, and sextic differentials. Time permitting, I will describe an approach to counting problems in strata of differentials of all orders.