We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Variations of noncommutative Hodge structures in general and in distinguished cases

Formale Metadaten

Titel
Variations of noncommutative Hodge structures in general and in distinguished cases
Serientitel
Anzahl der Teile
15
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A variation of twistor structures in the sense of Simpson, Sabbah and Mochizuki is a 1-parameter family of flat connections on a complex vector bundle with (to be chosen) additional data and constraints. Some version on rank 2 bundles turns up in the DPW method for constructing CMC surfaces. Another version of arbitrary rank is equivalent to Simpson's harmonic bundles, which are a generalization and weakening of variation of Hodge structures. A generalization of variation of Hodge structures which is a not a weakening, can be encoded as an integrable variation of twistor structures. Closely related versions of this are tt^* geometry (Cecotti-Vafa), TERP structures (Hertling) and noncommutative Hodge structures (Katzarkov-Kontsevich-Pantev). In the talk, I will discuss these structures in general, and in distinguished cases which arise in the theory of isolated hypersurface singularities. A good way to control them is given by the theory of meromorphic connections with irregular poles and their Stokes structures. I will sketch some results and some open questions.