We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Machine learning-based maps of the environment: challenges of extrapolation and overfitting

Formale Metadaten

Titel
Machine learning-based maps of the environment: challenges of extrapolation and overfitting
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this session the lecturer discussed current challenges of using machine learning in the context of environmental monitoring. More specifically, the suitability of different cross-validation strategies to assess the prediction performance, including novel developments like the “nearest neighbor distance matching” method, were discussed. The lecturer enabled the attendees to further learn how suitable cross-validation strategies can be used to improve prediction models by applying them during hyperparameter tuning and variable selection. Finally, she thaugh them about the “area of applicability” of spatial prediction models – to limit predictions to the area where the model was enabled to learn about relationships. In the first part of the session, she guided the attendees through the motivation and conceptual ideas of these methods. In the second session how to apply these methods in practice. The newly suggested methods are implemented in the R package CAST which we will use together with the R package caret, but the attendees also learned how to use the methods with mlr3.
Schlagwörter