We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Proof complexity of Satisfiability Modulo Theories

Formale Metadaten

Titel
Proof complexity of Satisfiability Modulo Theories
Alternativer Titel
The Proof Complexity of SMT Solvers
Serientitel
Anzahl der Teile
28
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The resolution proof system has been enormously helpful in deepening our understanding of conflict-driven clause-learning (CDCL) SAT solvers. In the interest of providing a similar proof complexity-theoretic analysis of satisfiability modulo theories (SMT) solvers, we introduce a generalization of resolution called Res(T). We show that many of the known results comparing resolution and CDCL solvers lift to the SMT setting, such as the result of Pipatsrisawat and Darwiche showing that CDCL solvers with ``perfect'' non-deterministic branching and an asserting clause-learning scheme can polynomially simulate general resolution. We also describe a stronger version of Res(T), Res*(T), capturing SMT solvers allowing introduction of new literals. We analyze the theory EUF of equality with uninterpreted functions, and show that the Res*(EUF) system is able to simulate an earlier calculus introduced by Bjorner and De Moura for the purpose of analyzing DPLL(EUF). Further, we show that Res*(EUF) (and thus SMT algorithms with clause learning over EUF, new literal introduction rules and perfect branching) can simulate the Frege proof system, which is well-known to be far more powerful than resolution. Finally, we prove under the Exponential Time Hypothesis (ETH) that any reduction from EUF to SAT (such as the Ackermann reduction) must, in the worst case, produce an instance of size at least n log n from an instance of size n.