We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Proof Complexity for SAT practitioner

Formale Metadaten

Titel
Proof Complexity for SAT practitioner
Alternativer Titel
Introduction to Proof Complexity for SAT practitioner
Serientitel
Anzahl der Teile
28
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Running a SAT solver on an UNSAT formula produces (implicitly or explicitly) a proof that the formula is unsatisfiable, usually expressible in an established formal language called proof system. This observation leads to study SAT solving methods by looking at the generated proofs. I.e., if an UNSAT formula has no short proof in a given proof system, the corresponding SAT solvers cannot solve the formula efficiently. We introduce the area and the methods of proof complexity, that studies the length and the structure of proofs of UNSAT. In particular we define and discuss Resolution, Polynomial Calculus, Cutting Planes and Extended Resolution, which are the most relevant proof systems for current SAT solver technology. Since a SAT solver goal is, among other things, to look for proofs as short as possible, we briefly discuss the complexity of efficiently finding such short proofs.