We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Proof of the GM-MDS conjecture

Formale Metadaten

Titel
Proof of the GM-MDS conjecture
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A k x n matrix is an MDS matrix if any k columns are linearly independent. Such matrices span MDS (Maximum Distance Separable) codes. A standard construction of such matrices is by Vandermonde matrices, which generate the Reed-Solomon codes. The following question arose in several applications in coding theory: what zero patterns can MDS matrices have? it turns out that there is a simple combinatorial characterization that is both necessary and sufficient over large enough fields (concretely, of size {n \choose k}). It was conjectured by Dau et al in 2014 that the same combinatorial characterization is also sufficient over much smaller fields, of size n+k-1. This conjecture is called the GM-MDS conjecture. Dau et al proposed an algebraic conjecture on the structure of polynomials which would imply the GM-MDS conjecture. It speculates that the GM-MDS conjecture can be resolved by an "algebraic" construction. We prove this algebraic conjecture, and as a corollary also the GM-MDS conjecture.