We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Equivalence query learning and the negation of the finite cover property

Formale Metadaten

Titel
Equivalence query learning and the negation of the finite cover property
Serientitel
Anzahl der Teile
22
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
There are multiple connections between model-theoretic notions of complexity and machine learning. NIP formulas correspond to PAC-learning by way of VC-dimension, and stable formulas correspond to online learning by way of Littlestone dimension, also known as Shelah's 2-rank. We explore a similar connection between formulas without the finite cover property and equivalence query learning. In equivalence query learning, a learner attempts to identify a certain set from a set system by making hypotheses and receiving counterexamples. We use the notion of (strong) consistency dimension, an analogue of the the negation of the finite cover property for set systems. We show that finite (strong) consistency dimension and finite LIttlestone dimension characterize equivalence query learning, drawing on ideas from model theory. We also discuss the role of Littlestone dimension and strong consistency dimension in algorithms.