We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Hypoelliptic Laplacian and the trace formula

Formale Metadaten

Titel
Hypoelliptic Laplacian and the trace formula
Serientitel
Anzahl der Teile
22
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The hypoelliptic Laplacian gives a natural interpolation between the Laplacian and the geodesic flow. This interpolation preserves important spectral quantities. I will explain its construction in the context of compact Lie groups: in this case, the hypoelliptic Laplacian is the analytic counterpart to localization in equivariant cohomology on the coadjoint orbits of loop groups. The construction for noncompact reductive groups ultimately produces a geometric formula for the semisimple orbital integrals, which are the key ingredient in Selberg trace formula. In both cases, the construction of the hypoelliptic Laplacian involves the Dirac operator of Kostant.