We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Multigerbes: a new theory of higher gerbes

Formale Metadaten

Titel
Multigerbes: a new theory of higher gerbes
Serientitel
Anzahl der Teile
22
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Complex line bundles are classified naturally up to isomorphism by degree two integer cohomology H2, and it is of interest to find geometric objects which are similarly associated to higher degree cohomology. Gerbes (of which there are various versions, due respectively to Giraud, Brylinski, Hitchin and Chattergee, and Murray) provide a such theory associated to H3. Various notions of"higher gerbes" have also been defined, though these tend to run into technicalities and complicted bookkeeping associated with higher categories. We propose a new geometric version of higher gerbes in the form of "multi simplicial line bundles", a pleasantly concrete theory which avoids many of the higher categorical difficulties, yet still captures key examples including the string (aka loop spin) obstruction associated to 12 p1 in H4. In fact, every integral cohomology class is represented by one of these objects in the guise of a line bundle on the iterated free loop space equipped with a "fusion product" (as defined by Stolz and Teichner and further developed by Waldorf) for each loop factor.