We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Metrics on Dynamic Graphs (and lower bounds via Zigzag Persistence)

Formale Metadaten

Titel
Metrics on Dynamic Graphs (and lower bounds via Zigzag Persistence)
Alternativer Titel
Metrics on the collection of dynamic shapes
Serientitel
Anzahl der Teile
21
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of groups of animals. In a similar vein, when attempting to classify motion capture data according to action one is confronted with having to match/compare shapes that evolve with time. Motivated by these applications, we study the question of suitably metrizing the collection of all dynamic metric spaces (DMSs). We construct a suitable metric on this collection and prove the stability of several natural invariants of DMSs under this metric. In particular, we prove that certain zigzag persistent homology invariants related to dynamic clustering are stable w.r.t. this distance. These lower bounds permit the efficient classification of dynamic shape data in applications. We will show computational experiments on dynamic data generated via distributed behavioral models.
Schlagwörter