We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Non-Koszul Quadratic Gorenstein rings via Idealization

Formale Metadaten

Titel
Non-Koszul Quadratic Gorenstein rings via Idealization
Serientitel
Anzahl der Teile
19
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Let R be a standard graded Gorenstein algebra over a field presented by quadrics. Conca-Rossi-Valla showed that such a ring is Koszul if reg (R)<= 2 or if reg(R)= 3 and codim(R)<= 4, and asked if this is true for reg(R)= 3 in general. We give a negative answer to their question by finding suitable conditions on a non-Koszul quadratic Cohen-Macaulay ring R that guarantee the Nagata idealization of R with the (twisted) canonical module is a non-Koszul quadratic Gorenstein ring.