We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Square-free Groebner degenerations

Formale Metadaten

Titel
Square-free Groebner degenerations
Serientitel
Anzahl der Teile
19
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Let S be a polynomial ring, I a homogeneous ideal and denote by in(I) the initial ideal of I w.r.t. some term order on S. It is well-known that depth(S/I) >= depth(S/in(I)) and reg(S/I) <= reg(S/in(I)), and it is easy to produce examples for which these inequalities are strict. On the other hand, in generic coordinates equalities hold for a degrevlex term order, by a celebrated result of Bayer and Stillman. In a joint paper with Aldo Conca, we prove that the equalities hold as well under the assumption that in(I) is a square-free monomial ideal (for any term order), solving a conjecture of Herzog. In this talk, after discussing where this conjecture came from, I will sketch the proof of its solution.