We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On a new proof of the Harris ergodic theorem and related subexponential convergence results

Formale Metadaten

Titel
On a new proof of the Harris ergodic theorem and related subexponential convergence results
Serientitel
Anzahl der Teile
31
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We revisit a result in probability known as the Harris theorem and give a simple proof which is well-suited for some applications in PDE. The proof is not far from the ideas of Hairer \& Mattingly (2011) but avoids the use of mass transport metrics and can be readily extended to cases where there is no spectral gap and exponential relaxation to equilibrium does not hold. We will also discuss some contexts where this result can be useful, particularly in a model for neuron populations structured by the elapsed time since the last discharge.