We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

When Otto meets Newton and Schrödinger, an heuristic point of view

Formale Metadaten

Titel
When Otto meets Newton and Schrödinger, an heuristic point of view
Serientitel
Anzahl der Teile
31
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We propose a generalization of the Schr\"odinger problem by replacing the usual entropy with a functional F which approaches the Wasserstein distance along the gradient of F. From an heuristic point of view by using Otto calculus, we show that interpolations satisfy a Newton equation, extending the recent result of Giovani Conforti. Various inequalities as Evolutional-Variational-inequalities are also established from a heuristic point of view. As a rigorous result we prove a new and general contraction inequality for the usual Schr\"odinger problem under Ricci bound on a smooth and compact Riemannian manifold. This is a joint work with L. Ripani and C. L\'eonard.