We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Entropic concavity and positive energy

Formale Metadaten

Titel
Entropic concavity and positive energy
Serientitel
Anzahl der Teile
31
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
On a Riemannian manifold, lower Ricci curvature bounds are known to be characterized by geodesic convexity properties of various entropies with respect to the Kantorovich-Rubinstein-Wasserstein square distance from optimal transportation. These notions also make sense in a (nonsmooth) metric measure setting, where they have found powerful applications. In this talk I describe the development of an analogous theory for lower Ricci curvature bounds in time-like directions on a Lorentzian manifold. In particular, by lifting fractional powers of the Lorentz distance (a.k.a. time separation function) to probability measures on spacetime, I show the strong energy condition of Penrose is equivalent to geodesic concavity of the Boltzmann-Shannon entropy there.