We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Speeding up the deep learning development life cycle for cancer diagnostics

Formale Metadaten

Titel
Speeding up the deep learning development life cycle for cancer diagnostics
Serientitel
Anzahl der Teile
115
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
An important, but often overlooked aspect of developing a high-quality deep learning model is the iteration speed. If you can iterate faster, you can try out more ideas and over time you get better results. In this talk, you will learn about the different tricks you can use to train a great machine learning model in a shorter amount of time. In particular, I will discuss how we optimized our deep learning development life cycle at Mindpeak to create robust deep learning models for cancer diagnostics that work in vastly different laboratory settings. The goal of this talk is to point to the most important aspects which you can adjust to speed up the time it takes to go from idea to validated result. I will talk about many different aspects like task prioritization, data processing, communication, GPU parallelization, code quality, unit tests, continuous integration, data fit and profiling for speed. So hopefully, after the talk, you should be able to point to some items that you could do to improve the iteration speed when developing machine learning models. There are no strict requirements for the talk, but you probably obtain the highest benefit if you have gained some initial experience in developing machine learning models.