We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A stable scheme for simulation of incompressible flows in time-dependent domains and hemodynamic applications

Formale Metadaten

Titel
A stable scheme for simulation of incompressible flows in time-dependent domains and hemodynamic applications
Serientitel
Anzahl der Teile
26
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We present a stable finite-element scheme for incompressible flows in time-dependent domains. The time step is independent of the mesh size, and only one linear system is solved on each time step. We consider fluid-structure interaction (FSI) and Navier-Stokes equations in time-dependent domains. The properties of the scheme are shown on several benchmarks and hemodynamic applications. This is the joint work with Maxim Olshanskii (University of Houston), Alexander Danilov, Alexander Lozovskiy and Victoria Salamatova (INM RAS, MIPT). An unconditionally stable semi-implicit FSI finite element method. Comput.Methods Appl.Mech.Engrg., V.297, pp.437-454, 2015 A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes equations in moving domain with application to hemodynamics of the left ventricle. Russian J. Numer. Anal. Math. Modelling, V.32, N4, pp.225-236, 2017 A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain. Comput.Methods Appl.Mech.Engrg., V.333, 55-73, 2018