We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Distinguishing Sierpiński products of graphs

Formale Metadaten

Titel
Distinguishing Sierpiński products of graphs
Serientitel
Anzahl der Teile
19
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Sierpiński product of graphs was introduced as a generalization of Sierpiński graphs, which is a fractal-like family of graphs. The main building blocks of Sierpiński graphs are complete graphs and each next iteration is built in the fractal-like manner of a complete graph. This idea was recently generalized to a graph product, where instead of initially taking just one graph, we build a fractal-like structure with two arbitrary graphs, say G and H. Intuitively this is done in such a way that the product G⊗H has |G| copies of graph H which are connected among themselves according to the edges in G. So we get a graph with local structure of H, but global structure of G (i.e., if we contract all copies of H to a vertex, we get a copy of graph G). This construction is interesting because it may yield graphs with distinguishing number greater than 2. In the talk I will describe the Sierpiński products and list some of their basic properties, which may be useful to answer the open question(s) about the distinguishing number of Sierpiński products.