We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Minimal degree of the automorphism group of primitive coherent configurations

Formale Metadaten

Titel
Minimal degree of the automorphism group of primitive coherent configurations
Serientitel
Anzahl der Teile
19
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The minimal degree of a permutation group G is the minimum number of points not fixed by non-identity elements of G. Lower bounds on the minimal degree have strong structural consequences on G. In 2014 Babai proved that the automorphism group of a strongly regular graph with n vertices has minimal degree at least cn, with known exceptions. Strongly regular graphs correspond to primitive coherent configurations of rank 3. We extend Babai's result to primitive coherent configurations of rank 4. We also show that the result extends to non-geometric primitive distance-regular graphs of bounded diameter. The proofs combine structural and spectral methods. The results have consequences to primitive permutation groups that were previsouly known using the classification of finite simple groups (Cameron, Liebeck).