We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Improving Seagrass Detection Through A Novel Method For Optically Deep Water Masking

Formale Metadaten

Titel
Improving Seagrass Detection Through A Novel Method For Optically Deep Water Masking
Serientitel
Anzahl der Teile
237
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Seagrasses provide many ecosystem services such as habitat provisioning, biodiversity maintenance, food security, coastal protection, and carbon sequestration. With the projected temperature extremes and sea level rise due to climate change, these important ecosystems are highly threatened. Conserving these important ecosystems requires accurate and efficient mapping of its distribution and trajectories of change. Unfortunately, the spectral similarities between the seagrass and optically deep water pixels in the satellite images, or dark pixel confusion, causes potential classification errors. Within the context of the Global Seagrass Watch project, funded by DLR and supported by the GEO-GEE program, we develop a novel open method within the Google Earth Engine platform to identify and mask out these optically deep water pixels on open Sentinel-2 satellite data. This method yields less confusion and results in a more accurate seagrass detection which could benefit scientists focused on seagrass-related climate science. Please see the abstract above. Lightning talk, Climate Action Track – Open data Topic – Sensors, remote sensing, laser-scanning, structure from motion Level – 2 - Basic. General basic knowledge is required.