We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Orfeo ToolBox teams with TensorFlow to remove clouds in optical remote sensing images

Formale Metadaten

Titel
Orfeo ToolBox teams with TensorFlow to remove clouds in optical remote sensing images
Serientitel
Anzahl der Teile
237
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Built on the shoulders of the Orfeo ToolBox and TensorFlow, our software uses deep learning to remove clouds in optical images, using joint SAR/Optical Sentinel images. It is open-source, and comes with pre-trained models. Clouds represent the main issue affecting optical satellite images. Cloud-free scenes available at specific date is crucial in a wide range of monitoring applications. Differently, Synthetic Aperture Radar (SAR) sensors provide orthogonal information with respect to optical satellite, that enable the retrieval of information lost in optical images due to cloud cover. In the context of an increasing availability of both optical and SAR images, thank to the Sentinel constellation, a number of deep learning method have emerged in recent papers. These methods aim to reconstruct optical data polluted by cloud phenomena, exploiting SAR and optical images. We present an open-source software based on the Orfeo ToolBox and TensorFlow, that provide a framework to apply methods processing Sentinel-1 and Sentinel-2 images. Our software comes with a few pre-trained models that can be used out-of-the-box to remove clouds in Sentinel-2 images from Sentinel-1 and Sentinel-2 time series. Track – Education & research Topic – New trends: IoT, Indoor mapping, drones - UAV (unmanned aerial vehicle), Artificial intelligence - machine learning, deep learning-, geospatial data structures, real time raster analysis Level – 2 - Basic. General basic knowledge is required.