We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Odd order transcendental obstructions to the Hasse principle on general K3 surfaces

Formale Metadaten

Titel
Odd order transcendental obstructions to the Hasse principle on general K3 surfaces
Serientitel
Anzahl der Teile
23
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
After fixing numerical invariants such as dimension, it is natural to ask which birational classes of varieties fail the Hasse principle, and moreover whether the Brauer group (or certain distinguished subsets) explains this failure. In this talk, we will focus on K3 surfaces (e.g. a double cover of the plane branched along a smooth sextic curve), which have been a testing ground for many conjectures on rational points. In 2014, Ieronymou and Skorobogatov asked whether any odd torsion in the Brauer group of a K3 surface could obstruct the Hasse principle. We answer this question in the affirmative for transcendental classes; via a purely geometric approach, we construct a 3-torsion transcendental Brauer class on a degree 2 K3 surface over the rationals with geometric Picard rank 1 (hence with trivial algebraic Brauer group) which obstructs the Hasse principle. Moreover, we do this without needing a central simple algebra representative. This is joint work with Tony Varilly-Alvarado.