We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Free boundary problems as parabolic Integro-differential equations

Formale Metadaten

Titel
Free boundary problems as parabolic Integro-differential equations
Serientitel
Anzahl der Teile
24
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We demonstrate that a class of one and two phase free boundary problems can be recast as nonlocal parabolic equations on a codimension one submanifold. The canonical examples would be one-phase Hele-Shaw and Laplacian growth. In the special class of free boundaries that are graphs over Rd, we give a precise characterization that shows their motion is equivalent to that of a solution of a nonlocal (fractional) and nonlinear parabolic equation in Euclidean space. Our main observation is that the free boundary condition defines a nonlocal operator having what we call the Global Comparison Property. A consequence of the connection with nonlocal parabolic equations is that for free boundary problems arising from translation invariant elliptic operators in the positive and negative phases, one obtains, in a uniform treatment for all of the problems, a propagation of modulus of continuity for weak solutions of the free boundary flow. This is based on joint works with Hector Chang-Lara and Russell Schwab.