We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Feynman Propagators and the Self-Adjointness of the Klein–Gordon Operator

Formale Metadaten

Titel
Feynman Propagators and the Self-Adjointness of the Klein–Gordon Operator
Serientitel
Anzahl der Teile
15
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Feynman propagator is at the heart of quantum field theory. However, in quantum field theory in curved spacetimes, no locally covariant notion of a distinguished Feynman propagator exists. Instead, often a distinguished class of Feynman propagators is considered, which share a common parametrix. Nevertheless, certain classes of spacetimes possess distinguished Feynman propagators. First, I will give an in-depth introduction to propagators (Green functions) on curved spacetimes and their role in quantum field theory. In particular, I will highlight the importance of the so-called Hadamard states – an appropriate generalization of the Poincaré invariant vacuum state. Then, I will show that the free Klein–Gordon field on asymptotically static spacetimes comes equipped with a natural Feynman propagator (albeit globally constructed and generally not related to a state). Finally, I will argue that this Feynman propagator is closely related to the question of the self-adjointness of the Klein–Gordon operator on L2(spacetime) and the boundary value of its resolvent.