We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

New ML Datasets in Daylight Release

Formale Metadaten

Titel
New ML Datasets in Daylight Release
Serientitel
Anzahl der Teile
41
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Mapping from satellite imagery in highly populated areas can be very challenging when dense buildings and trees occlude the surface. Device location signals can provide evidence about the existence of roads in these scenarios. Grab, the leading superapp for deliveries, mobility and financial services in Southeast Asia, collects and processes GPS signals from their network of drivers. These signals are anonymized and averaged to produce vector data after some machine learning inference and centerline extraction. Based on our collaboration with Grab, we present a framework on conflating this data against OSM roads. As a result we identified 240,000 kms of new roads in 62 cities where image-based ML models have difficulty due to occlusion. The outputs are being made public through the Daylight Release. This talk was presented at State of the Map US 2022. To learn more about State of the Map US 2022, visit https://2022.stateofthemap.us/ Learn more about OpenStreetMap US at https://www.openstreetmap.us/