We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Neumann domains on manifolds and graphs

Formale Metadaten

Titel
Neumann domains on manifolds and graphs
Serientitel
Anzahl der Teile
20
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The nodal set of a Laplacian eigenfunction forms a partition of the underlying manifold or graph. Another natural partition is based on the gradient vector field of the eigenfunction (on a manifold) or on the extremal points of the eigenfunction (on a graph). The submanifolds (or subgraphs) of this partition are called Neumann domains. We present the main results concerning Neumann domains on manifolds and on graphs. We compare manifolds to graphs and relate the Neumann domain results on each of them to the nodal domain study. The talk is based on joint works with Lior Alon, Michael Bersudsky, Sebastian Egger, David Fajman and Alexander Taylor.