We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map

Formale Metadaten

Titel
Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
Serientitel
Anzahl der Teile
20
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Courant's nodal domain theorem provides a natural generalization of Sturm–Liouville theory to higher dimensions; however, the result is in general not sharp. It was recently shown that the nodal deficiency of an eigenfunction is encoded in the spectrum of the Dirichlet-to-Neumann operators for the eigenfunction's positive and negative nodal domains. While originally derived using symplectic methods, this result can also be understood through the spectral flow for a family of boundary conditions imposed on the nodal set. In this talk I will describe this flow for a Schrödinger operator with separable potential on a rectangular domain, and describe a mechanism by which low energy eigenfunctions do or do not contribute to the nodal deficiency. Operators on non-rectangular domains and quantum graphs will also be discussed. This talk represents joint work with Gregory Berkolaiko (Texas A&M) and Jeremy Marzuola (UNC Chapel Hill).