We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Singular value shrinkage priors and empirical Bayes matrix completion

00:00

Formale Metadaten

Titel
Singular value shrinkage priors and empirical Bayes matrix completion
Serientitel
Anzahl der Teile
20
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
I talk about two recent studies on singular value shrinkage. 1. We develop singular value shrinkage priors for the mean matrix parameters in the matrix-variate normal model with known covariance matrices. Our priors are superharmonic and put more weight on matrices with smaller singular values. They are a natural generalization of the Stein prior. Bayes estimators and Bayesian predictive densities based on our priors are minimax and dominate those based on the uniform prior in finite samples. In particular, our priors work well when the true value of the parameter has low rank. 2. We develop an empirical Bayes (EB) algorithm for the matrix completion problems. The EB algorithm is motivated from the singular value shrinkage estimator for matrix means by Efron and Morris. Numerical results demonstrate that the EB algorithm attains at least comparable accuracy to existing algorithms for matrices not close to square and that it works particularly well when the rank is relatively large or the proportion of observed entries is small. Application to real data also shows the practical utility of the EB algorithm.