We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A theoretical justification that Anderson acceleration improves linear convergence rates

Formale Metadaten

Titel
A theoretical justification that Anderson acceleration improves linear convergence rates
Serientitel
Anzahl der Teile
19
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The extrapolation method known as Anderson acceleration has been used for decades to speed the convergence of nonlinear solvers in many applications. A mathematical justification of the improved convergence rate however has remained elusive. Here, we provide theory to establish the improved convergence rate. The key ideas of the analysis are relating the difference of consecutive iterates to residuals based on performing the inner-optimization in a Hilbert space setting, and explicitly defining the gain in the optimization stage to be the ratio of improvement over a step of the unaccelerated fixed point iteration. The main result we prove is this method of acceleration improves the convergence rate of a fixed point iteration to first order by a factor of the gain at each step as the method converges.