We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Fully Discrete Energy Stable Methods for Maxwell's Equations in Nonlinear Media

Formale Metadaten

Titel
Fully Discrete Energy Stable Methods for Maxwell's Equations in Nonlinear Media
Serientitel
Anzahl der Teile
19
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The propagation of electromagnetic waves is modeled by time-dependent Maxwell's equations coupled with constitutive laws that describe the response of the media. In this work, we examine a nonlinear optical model that describes electromagnetic waves in linear Lorentz and nonlinear Kerr and Raman media. To design efficient, accurate, and stable computational methods, we apply high order discontinuous Galerkin discretizations and finite difference schemes in space. The challenge to achieve provable stability for fully-discrete methods lies in the temporal discretizations of the nonlinear terms. To overcome this, novel modification is proposed for the second-order leap-frog and implicit trapezoidal time integrators. The performance of the method is demonstrated via numerical examples.