We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Kippenhahn’s Theorem for the joint numerical range

Formale Metadaten

Titel
Kippenhahn’s Theorem for the joint numerical range
Serientitel
Anzahl der Teile
24
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
By the Toeplitz-Hausdorff theorem in convex analysis, the numerical range of a complex square matrix is a convex compact subset of the complex plane. Kippenhahn's theorem describes the numerical range as the convex hull of an algebraic curve that is dual to a hyperbolic curve. For the joint numerical range of several matrices, the direct analogue of Kippenhahn's theorem is known to fail. We discuss the geometry behind these results and prove a generalization of Kippenhahn's theorem that holds in any dimension.