We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Noncommutative polynomials describing convex sets

Formale Metadaten

Titel
Noncommutative polynomials describing convex sets
Serientitel
Anzahl der Teile
24
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The semialgebraic set Df determined by a noncommutative polynomial f is the closure of the connected component of {(X,X∗):f(X,X∗)≻0} containing the origin. When L is a linear pencil, the semialgebraic set DL is the feasible set of the linear matrix inequality L(X,X∗)⪰0 and is known as a free spectrahedron. Evidently these are convex and by a theorem of Helton \& McCullough, a free semialgebraic set is convex if and only it is a free spectrahedron. \\\\ In this talk we solve the basic problem of determining those f for which Df is convex. The solution leads to an effective algorithm that not only determines if Df is convex, but if so, produces a minimal linear pencil L such that Df=DL. Of independent interest is a subalgorithm based on a Nichtsingulärstellensatz: given linear pencils L,L′, it determines if L′ takes invertible values on the interior of DL. Finally, it is shown that if Df is convex for an irreducible noncommutative polynomial, then f has degree at most two, and arises as the Schur complement of an L such that Df=DL.