We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Matrix models for quantum permutations

Formale Metadaten

Titel
Matrix models for quantum permutations
Serientitel
Anzahl der Teile
14
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A quantum permutation (or magic unitary) is given by a square matrix whose entries are self-adjoint projections acting on a common Hilbert space H with the property that the row and column sums each add up to the identity operator. Quantum permutations are operator-valued analogues of ordinary permutation matrices and they arise naturally in both quantum group theory and also in the study of quantum strategies for certain non-local games. From the perspective of non-local games, it is often of great importance to know whether or not a quantum permutation (possibly satisfying some additional algebraic relations among its entries) admits a matrix model. I.e., can it be realized via operators on a finite-dimensional Hilbert space H? In this talk, I will explain how in the case of ``generic'' quantum permutations, matrix models abound. More precisely, the universal unital ∗-algebra A(N) generated by the coefficients of an N×N quantum permutation is always residually finite dimensional (RFD). Our arguments are based on quantum group and subfactor techniques. As an application, we deduce that the II1-factors associated to quantum permutation groups satisfy the Connes Embedding Conjecture. This is joint work with Alex Chirvasitu and Amaury Freslon.