We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Donaldson-Thomas theory of non-commutative projective schemes

Formale Metadaten

Titel
Donaldson-Thomas theory of non-commutative projective schemes
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We study non-commutative projective varieties in the sense of Artin-Zhang, which are given by non-commutative homogeneous coordinate rings, which are finite over their centre. We construct moduli spaces of stable modules for these, and construct a symmetric obstruction theory in the CY3-case. This gives deformation invariants of Donaldson-Thomas type. The simplest example is the Fermat quintic in quantum projective space, where the coordinates commute only up to carefully chosen 5th roots of unity. We explore the moduli theory of finite length modules, which mixes features both of the Hilbert scheme of commutative 3-folds, and the representation theory of quivers with potential. This is mostly a report on the work of Yu-Hsiang Liu, with contributions by myself and Atsushi Kanazawa.