We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Fibrations of algebraic varieties and derived equivalence

Formale Metadaten

Titel
Fibrations of algebraic varieties and derived equivalence
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk we study the behavior of special classes of fibrations onto normal projective varieties that admit a finite morphism to an abelian variety under derived equivalence of smooth projective complex varieties. Our first result is that any derived equivalence of such varieties induces a base preserving correspondence between their sets of isomorphism classes of fibrations onto smooth projective curves of genus greater or equal to two. The proof of this result involves earlier results, obtained in collaboration with M. Popa, regarding the derived invariance of the non-vanishing loci attached to the canonical bundle, and generic vanishing theory. Concerning fibrations onto higher-dimensional bases, we show how the problem of the derived invariance of fibrations is related to the conjectural derived invariance of Hodge numbers. I will report on some progress in this direction.