We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On an extension of the separation theorem for quadratic forms over fields

Formale Metadaten

Titel
On an extension of the separation theorem for quadratic forms over fields
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The problem of determining conditions under which a rational map can exist between a pair of twisted flag varieties plays an important role in the study of algebraic groups and their torsors over general fields. A non-trivial special case arising in the theory of quadratic forms amounts to studying the extent to which an anisotropic quadratic form can become isotropic after extension to the function field of a quadric. To this end, let p and q be anisotropic quadratic forms over an arbitrary field, and let k be the dimension of the anisotropic part of q over the function field of the quadric p=0. We then conjecture that the dimension of q lies within k of an integer multiple of 2s+1, where 2s+1 is the least power of 2 bounding the dimension of p from above. This generalizes the so-called ``separation theorem'' of D. Hoffmann, bridging the gap between it and some other classical results on Witt kernels of function fields of quadrics. The statement holds trivially if k≥2s−1. In this talk, I will discuss recent work that confirms its validity in the case where k≤2s−1+2s−2 (among other cases).