We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Graded singularity category of Gorenstein algebras with levelled Beilinson algebras

Formale Metadaten

Titel
Graded singularity category of Gorenstein algebras with levelled Beilinson algebras
Serientitel
Anzahl der Teile
16
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Our goal is to find conditions on a noetherian AS-regular algebra A and an idempotent e∈A for which the graded singularity category Singgr(eAe) admits a tilting object. Of particular interest is the situation in which A is a graded skew-group algebra S#G, where S is the polynomial ring in n variables and G<SL(n,k) is finite, and e=1|G|∑g∈Gg, so that eAe≅SG. A tilting object was found by Amiot, Iyama and Reiten in the case where A has Gorenstein parameter 1. Generalizing the work of Iyama and Takahashi, Mori and Ueyama obtained a tilting object in Singgr(SG), provided that S is a noetherian AS-regular Koszul algebra generated in degree 1 and G has homological determinant 1. In this talk, we will discuss certain silting objects and then specialise to the setting in which the Beilinson algebra is a levelled algebra, giving a generalisation of the result of Mori and Ueyama.