We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Classifying quasi-hereditary structures of some quiver algebras

Formale Metadaten

Titel
Classifying quasi-hereditary structures of some quiver algebras
Serientitel
Anzahl der Teile
16
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
From the minute 49:44 of video does not have audio. Quasi-hereditary algebras were introduced by L. Scott in the context of the work of E. Cline, B. Parshall and L. Scott on highest weight categories arising in the representation theory of Lie algebras and algebraic groups. The notion of a quasi-hereditary algebra depends on a partial order given to the set of simple modules. In particular an algebra may be quasi-hereditary for one partial order but not for another one, even in the hereditary case. After recalling basic definitions, we will introduce an equivalence relation on the set of all partial orders giving a quasi-hereditary algebra, calling the equivalence classes quasi-hereditary structures. In the case of the path algebra of an equioriented quiver of type A, we will classify all its quasi-hereditary structures in terms of tilting modules, highlighting its nice combinatorial properties. Then we will generalise this classification to any orientation. As a complementary example we will discuss a class of quiver algebras with a unique quasi-hereditary structure. Time permitting, we will introduce a partial order on the set of all quasi-hereditary structures and give some examples. This is joint work in progress with Yuta Kimura and Baptiste Rognerud.